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Abstract. Predator—prey dynamics can have landscape-level impacts on ecosystems, and yet, spatial pat-
terns and environmental predictors of predator-prey dynamics are often investigated at discrete locations,
limiting our understanding of the broader impacts. At these broader scales, landscapes often contain multi-
ple complex and heterogeneous habitats, requiring a spatially representative sampling design. This chal-
lenge is especially pronounced in California’s Sacramento-San Joaquin River Delta, where managers
require information on the landscape-scale impacts of non-native fish predators on multiple imperiled
native prey fish populations. We quantified relative predation risk in the southern half of the Delta (South
Delta) in 2017 using floating baited tethers that record the exact time and location of predation events. We
selected 20 study sites using a generalized random tessellation stratified survey design, which allowed us
to infer relationships between key environmental covariates and predation across a broader spatial scale
than previous studies. Covariates included distance-to-nearest predators, water temperature, turbidity,
depth, bottom slope, bottom roughness, water velocity, and distance-to-nearest riverbank and nearest
aquatic vegetation bed. Model selection determined the covariates that best predicted relative predation
risk: water temperature, time of day, mean predator distance, and river bottom roughness. Using this
model, we estimated predation risk for the South Delta landscape at a 1-day and 1-km resolution. This
effort identified hot spots of predation risk and allowed us to generate predicted survival for migrating fish
transiting the South Delta. This methodology can be applied to other systems to evaluate spatio-temporal
dynamics in predation risk, and their biotic and abiotic predictors.
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INTRODUCTION level impacts, and understanding these at a bio-
logically relevant scale is crucial to avoid over-
Ecological processes are difficult to effectively  Jooking important trends and relationships
measure and predict on landscape scales. Evalu-  (Levin 1992). The challenge is therefore to collect
ating multi-species ecological processes (e.g., information on ecological processes at a logisti-
predator—prey interactions) across a landscape is  cally feasible observational scale that can be
particularly challenging because species react appropriately generalized to the larger process
uniquely as conditions progressively change. Itis gcale.
nonetheless critical to do so; ecological processes Predation has been shown to have not only
can have drastic population-level and ecosystem- significant impacts on prey populations, but also
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impacts that can ripple throughout an ecosystem
or nearby ecosystems (Estes and Palmisano 1974,
Power 1990, Fortin et al. 2005). One well-studied
example is the cross-ecosystem transfer of nutri-
ents mediated through predation on salmon
(Hilderbrand et al. 1999, Merz and Moyle 2006).
Understanding the spatial and temporal dynam-
ics in predation, as well as the biotic and abiotic
drivers of these, is essential for managing preda-
tor and prey populations. This information is
particularly valuable in managed ecosystems
where humans can control conditions in order to
influence predation dynamics. However, observ-
ing predation events in situ is often nearly
impossible and, as a result, is often measured in
laboratory settings. Predation events that are
observed in situ are generally at extremely small
spatial or temporal scales (e.g., Neuswanger
et al. 2014), making landscape-scale predictions
challenging (Hunsicker et al. 2011).

This challenge is especially pertinent in Cali-
fornia’s Sacramento-San Joaquin River Delta
where non-native piscine predators are known to
have substantial impacts on imperiled salmonid
and other native fish populations, and vyet,
resource managers are lacking the landscape-
scale predator—prey information they require to
mitigate these impacts. Historically, the Delta
was an important rearing area for some of the
largest salmon runs in North America
(Yoshiyama et al. 1998), but over the past cen-
tury, all of these populations have declined dras-
tically, with at least one population that is locally
extinct and the remaining listed as endangered,
threatened, or species of concern under the
Endangered Species Act. Evidence from long-
term tagging studies suggests that the survival of
juvenile salmon during outmigration has a dis-
proportionately large impact on juvenile-to-adult
return ratios (Michel 2019). Furthermore, evi-
dence from telemetry studies on juvenile salmo-
nids suggests that low survival while transiting
the Delta during outmigration may be one of the
major contributors to the declines of these popu-
lations (Kjelson and Brandes 1989, Perry et al.
2010, Buchanan et al. 2013, Michel et al. 2015).
While all of the mechanisms of this mortality are
not known, studies indicate that predation by the
large populations of non-native piscine predators
present in the Delta is significant (Grossman
et al. 2013, Grossman 2016). The Delta is part of
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what is considered to be the most invaded estu-
ary in the world (Cohen and Carlton 1998), and
many of these invasions and introductions are
predator fish species that are potentially nega-
tively impacting native fish populations (Moyle
and Williams 1990). Recent studies have used
diet analyses to quantify the impact of non-na-
tive predators on salmonids migrating through
the Delta (Sabal et al. 2016, Michel et al. 2018).
However, these studies sampled few locations,
making it difficult to extrapolate findings to a
broader landscape scale.

While some studies have attempted to quan-
tify the incidence of predators, prey, and pis-
civory on a landscape scale in the Delta (Nobriga
and Feyrer 2007), no data exist on the environ-
mental factors affecting predator—prey dynamics
at this scale. Such data are critically needed to
inform the numerous Delta-wide ecological mod-
els currently being developed and implemented
for management purposes (Hendrix et al. 2014,
CVPIA Science Integration Team 2019). A land-
scape-level approach to understanding predator—
prey dynamics will allow for better predictions
of the effectiveness and ecosystem-wide
responses of management actions, including
predator control, habitat alteration, and water
management strategies. In addition, it is hypoth-
esized that predation risk is spatially heteroge-
neous, resulting in key locations with relatively
high predation risks compared to the surround-
ing area (Sabal et al. 2016). Such locations,
referred to as predation hot spots (Grossman
et al. 2013), are often identified anecdotally or as
an ancillary product to a different project. How-
ever, a temporally and spatially explicit preda-
tion risk model may be able to objectively
identify likely predation hot spots. Finally, pre-
dation risk estimates can also be compared to
historical salmonid survival estimates to discern
what proportion of mortality is due to predation.

Our goal of this project was to generate spa-
tially and temporally robust estimates of relative
predation risk for salmonids as a way to reveal
plausible mechanisms for predation-related mor-
tality. We measured the spatial and temporal
dynamics using predation event recorders (PERs;
Demetras et al. 2016), which are baited tethers
that record the time and location of predation
events, yielding relative (but not absolute) preda-
tion rates through space and time. We
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concurrently collected habitat, water quality, and
predator density data, and used model selection
to identify the most plausible relationships
between these variables and predation events.
Using the most parsimonious model or suite of
models, we then predicted fine-scale (1-km,
daily) spatial and temporal patterns in predation
risk during the 2017 juvenile salmonid outmigra-
tion season for the South Delta region. Using this
model, we then objectively identified likely pre-
dation hot spots. Finally, we compile these fine-
scale predictions to generate through-Delta
cumulative survival estimates as experienced by
migratory fishes transiting the Delta.

METHODS

Field site selection

The Sacramento-San Joaquin Delta is a com-
plex and expansive body of water, with over
1100 km of waterways, making it difficult to
comprehensively investigate the predator—prey
relationships across the entire domain. Our study
design allowed for sampling in such a way as to
extrapolate to the larger region in an objective
manner. We used generalized random tessella-
tion stratified (GRTS) spatial sample selection
(Stevens and Olson 2004) to identify study sites.
This method is a spatially balanced random sam-
pling technique that ensures that all regions of
interest are adequately sampled.

Our study focused on the lower San Joaquin
River and South Delta, a region of extremely low
survival for outmigrating salmonids from the
San Joaquin River drainage (Buchanan et al.
2013). This region is represented by low-gradi-
ent, tidally forced rivers and sloughs that are lar-
gely channelized and leveed. We delimited this
area into 7 regions that share similar characteris-
tics (Fig. 1). The San Joaquin River was split into
an Upper (from Mossdale to Stockton), a Middle
(from Stockton to Turner Cut), and a Lower
(Turner Cut to Antioch) region. We delimited
Old River (a major distributary channel of the
South Delta) into an Upper (Head of Old River to
State Water Project) and a Lower (State Water
Project to confluence with the lower San Joaquin
River) region. Middle River was not considered
in our site selection protocol because few salmo-
nids use this waterway (Buchanan et al. 2013).
Franks Tract was delimited as a region; however,
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the open water portions of this region were not
sampled due to logistical constraints. Finally, we
sampled in one additional region that consisted
of areas found between San Joaquin River and
Old River that are geographically distinct from
these two: Mildred Island, Turner Cut and
Columbia Cut. All regions are freshwater but
experience tidal influence, and during most
years, flow in the upstream direction is observed
during flood tides.

The GRTS sample site selection method draws
sites randomly while balancing between regions
and assigns them a draw number. For pairs of
sites that were less than three river kilometers
(kilometers by way of the river) away from each
other, we dropped one site and replaced it with a
new site from an oversample list that maintained
spatial balance. We selected 20 sample sites
(Fig. 1), three of which were visited every week
(repeat sites) and 17 of which were visited only
once. The three repeat sites (Sites 1, 25, and 28)
were included in order to assess overall temporal
trends in predation across the six-week sampling
season that should not be attributed to spatial
patterns. The repeat sites were selected to be spa-
tially balanced across the entire region of interest
in order to best capture temporal trends through-
out the South Delta. One sampling site was vis-
ited on each day, and sampling was conducted
from 3 April through 13 May 2017 to overlap
with the primary outmigration season of San Joa-
quin River salmonid populations (exact sampling
dates are shown in Appendix S1: Table S1).

We note that 2017 was an extremely wet year
in California, and this may have affected preda-
tor abundances, distribution, and behavior. The
2017 water year had the highest annual precipita-
tion index for the Northern Sierras and the sec-
ond highest index for the San Joaquin River
Basin since 1964 (CDWR 2018). We describe the
potential impacts of this anomalous water year
on our results in Discussion.

Predation event recorders

We developed predation event recorders
(PERs) to measure the relative predation rates on
juvenile salmon swimming through our study
reaches. PERs—described in detail in Demetras
et al. (2016)—are drifting buoys with a live juve-
nile hatchery Chinook salmon Oncorhynchus tsha-
wytscha tethered as bait (Fig. 2). The drifting
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Fig. 1. A map of the regions selected for the GRTS site selection protocol, as well as the final sampling sites

selected.

PERs were outfitted with a GPS tracker and pre-
dation-triggered timer that allowed us to deter-
mine the exact time and location of predation
events. PERs were additionally outfitted with
cameras in order to determine whether a trig-
gered timer was due to predation or other cir-
cumstances, as well as ensure the salmon was
alive and swimming for the duration of the PER
deployment. Mean fork length of the Chinook
salmon used for baiting the PERs was 68.0 mm
(SD 5.4).

Our daily sampling period was from approxi-
mately 3 h before to 1.5 h after sunset, during
which we made multiple deployments of each
PER. Previous studies have shown that predation
risk is highest at sunset when compared to sun-
rise, midday, and midnight (Demetras et al. 2016,
C. J. Michel, unpublished data); we therefore chose
this focused period to develop more robust
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relationships between predation risk, habitat,
and environmental variables. While some poten-
tial predators are known to be nocturnal and
were therefore likely not significantly influencing
predation rates in this study, we also chose the
period of highest probable predation so as to
serve as a representation of the maximum daily
predation rate. Boat-based crews would begin
deploying drifting PERs, 15 in total, scattered
across the cross section at the upstream end of
each 1-km study reach (as determined by the
direction of current during that tide cycle). PERs
were redeployed at the upstream end of the
reach once they reached the end of the 1-km
reach (typically every hour) until 1.5 h after sun-
set, which would typically result in approxi-
mately 45 individual PER drifts per night. Every
time a PER was removed from the water, the sta-
tus of the predation-triggered timer and Chinook
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Fig. 2. A schematic of the PER, taken from Demetras et al. (2016).

salmon bait was recorded, the timer was reset,
and the bait was replaced before redeployment if
necessary.

Predation risk model

We analyzed the PERs data with a Cox propor-
tional hazard model (Cox 1972, Therneau and
Grambsch 2000) to estimate relative predation
risk at each sample site. The Cox model is a time-
to-event model that estimates the instantaneous
rate of an event, in this case, predation, as a func-
tion of predictor variables. The response vari-
ables for a Cox model are the right-censored time
interval length and whether an event (predation)
occurred during that interval. The Cox model is
therefore temporally explicit, which allowed us
to associate spatial and temporal environmental
conditions at 1-min intervals for each unique
PER drift, and estimate predation risk as a func-
tion of these covariates. We employed a mixed-
effect Cox model in order to include study site as
a random effect to account for inherent differ-
ences in site-specific predation risk not captured
by the predictor variables. Because each
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sampling week balanced 3 sampling days at
repeat sites (same 3 sites visited weekly), with 3
sampling days of visiting new sites, the model
was effectively able to identify the effect of sea-
sonal trends (e.g., changing water temperatures)
on predation risk and the effect of spatial and
temporal trends occurring within a single sam-
pling day (e.g., time to sunset). The resulting
relationships determined by model selection
therefore represent a blend of the most important
relationships acting on these different, equally
important, scales.

The exponentiated parameter coefficient in a
Cox model represents the hazard ratio, an easily
interpretable metric of effect size. Hazard ratios
between 0 and 1 mean that the risk is decreased
over mean conditions; that is, a predation hazard
ratio of 0.7 means that predation risk will be
reduced by 30% over mean conditions. A hazard
ratio of 1 means risk remains unchanged over
mean conditions. A hazard ratio above 1 means
that risk is increased; that is, a predation hazard
ratio of 1.3 means that predation risk will be
increased by 30% over mean conditions.
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Estimating weekly predation rates

In order to elucidate seasonal trends in preda-
tion risk, we constructed an initial mixed-effect
Cox model using only PER data from the repeat
sites. Predation risk was modeled as a function
of week, with study site as a random effect. We
then predicted the predation rate per week given
the PER data, except with no random effect. To
generate 95% confidence intervals, we employed
nonparametric bootstrapping with 100 simula-
tions and estimated the 2.5% and 97.5% quantiles
for these predicted predation rates per week.

Influence of habitat features and environmental
variables on predation rates

The distribution, behavior, and abundance of
both predator and prey fish species are variable
in response to environmental variables and the
availability of suitable physical habitat features.
In turn, predation rates likely vary in response to
the heterogeneous nature of the surrounding
physical environment. In order to examine rela-
tive predation rates upon juvenile Chinook sal-
mon across the diverse spatial landscape of the
Southern Delta, we measured environmental
variables and quantified habitat metrics for each
of our twenty study sites and incorporated these
covariates into a predation risk model. We asso-
ciated temporal environmental variables with the
PER data at one-minute intervals, and similarly
associated spatial habitat variables at the location
of one-minute intervals along with each PER
drift. We then used model selection with the
mixed-effect Cox proportional hazard model
structure to determine fine-scale spatial and tem-
poral relationships between habitat and water
quality variables and predation risk.

We selected environmental variables and habi-
tat features known to exert influence over the rel-
ative abundance, energetic demands, behavior,
and efficacy of predatory freshwater species pre-
sent in the Southern Delta. They included sub-
merged aquatic vegetation (SAV; Nobriga et al.
2005, Conrad et al. 2016, Hestir et al. 2016),
depth, habitat complexity (as measured by bot-
tom slope and bottom roughness), distance from
shore (Michel et al. 2018), flow velocity (Cada
et al. 1997), turbidity and time to sunset (Helf-
man 1986, Gregory and Levings 1998, Sweka and
Hartman 2003), water temperature (Rice et al.
1983, Hartman and Brandt 1995, Callihan et al.
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2014), and predator density. Time to sunset was
expected a priori to have a nonlinear relationship
with predation risk, and therefore, a spline func-
tion was utilized to allow for a nonlinear rela-
tionship during model fitting. Environmental
variables were collected using a water quality
sonde recording at one-minute intervals (de-
ployed in each study site for the duration of sam-
pling). We quantified habitat features for each of
our study sites using a combination of field-col-
lected and remote-sensed data.

We quantified the distribution and extent of
SAV for each of our study sites utilizing 455 kHz
side-scan sonar images with a low-cost side-scan
fish finder sonar (Kaeser and Litts 2010, Kaeser
et al. 2013). Only SAV patches >5 m along the
longest axis were digitized within ArcGIS (ESRI
version 10.4.1). We used an inverse distance
weighted distance-to-nearest SAV patch as the
predictor variable in the model, based on the
assumption that increasingly distant SAV
patches would have less influence on predation.
We extracted water depths for our study sites
from a San Francisco Bay-Delta digital elevation
model developed by USGS (Fregoso et al. 2017),
a 10 x 10 m bathymetry layer covering the
extent of our study area. To quantify habitat
complexity, we estimated both bottom slope (de-
grees from horizontal) and bottom roughness
(coefficient of variation across all depths of a site)
from the USGS bathymetry layer. Unlike most
other habitat variables, bottom roughness was
estimated across each of the 1-km study sites,
and associated with the PER data at this scale. In
essence, bottom slope was included to represent
the instantaneous habitat complexity, while bot-
tom roughness was included to represent the
habitat complexity throughout the site. Finally,
we used PER speed over ground as a surrogate
for flow velocity since PERs drift with the surface
current and are negligibly affected by other
forces (such as wind).

Predator densities at each site were estimated
concurrently to PER sampling using DIDSON
acoustic cameras (Loomis 2019). A separate boat
and crew conducted DIDSON surveys to collect
information on the distribution, abundance, and
density of predators. Within each 1-km survey
reach, DIDSON surveys ensonified the upper
water column following longitudinal transects
both along the shoreline and in the channel.
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DIDSON survey footage was then manually
reviewed, and all fish larger than approximately
15 cm were measured in multiple video frames.
Finally, any fish larger than 20 cm was deemed
to be a potential piscivore, counted, and georefer-
enced. Loomis (2019) was able to further refine
the DIDSON predator counts by distinguishing
known predators (e.g., striped bass and large-
mouth bass) from the common carp (Cyrinus car-
pio), the most abundant large-bodied non-
predator species in the Delta, with a 98% classifi-
cation accuracy.

In order to provide an index of predator abun-
dance with sufficiently high spatial and temporal
resolution for association with PER data, we
used a nearest neighbor analysis with a time-
scaled distance measure between all observed
predators and each 1-min interval PER location
within a sample reach. A time-scaled distance
(Dyj) between two points i and j was calculated
following the same practice used in t-LoCoH
home-range construction (Lyons et al. 2013) sum-
marized in the equation below:

\/Ax + AYZ + (5 X Ymax X Aty (1)

where s is a dimensionless scalar to control the
effect of time, and Y.y is the maximum velocity
of a predator fish. For this analysis, we set ymax
equal to the maximum swimming velocity of a
striped bass, 0.83 m/s (Freadman 1979). S was set
to a value of 0.03 so as to produce nearest neigh-
bor sets composed of approximately 50% time-
selected predators, ensuring that the final metric
incorporated predators that were known to exist
near a PER both in time and in space. For each 1-
min interval PER location, we calculated the
time-scaled distance from the PER location to all
observed predators in a sample reach. We used
the mean of the distance to the nearest 10 preda-
tors as the final index of local predator abun-
dance.

Prior to fitting the Cox models, we performed
pairwise comparisons of continuous variables to
determine whether any variables were collinear.
All variables had pairwise correlation coefficients
of <0.7 and were therefore deemed sufficiently
non-collinear and kept (Dormann et al. 2013). We
standardized covariate values such that the
resulting standardized beta coefficients could be
interpreted as the predicted change in the hazard
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ratio given a one standard deviation increase in
the covariate value.

To determine the best predictive predation risk
model, we performed model selection on 100
simulations of 10-fold cross-validation resam-
pling. We used Akaike’s information criterion
corrected for small sample size (AIC,) to select
the most parsimonious model based on both the
random- and fixed-effects structure (Akaike
1974). For each simulation, we randomly selected
90% of the data, then performed model selection
(utilizing AIC.) for a suite of Cox proportional
hazard models with all possible combinations of
the linear predictor variables. All models
included site as a random effect. We assumed
models with AAIC. <2 had equal support
(Burnham and Anderson 2002); thus, if multiple
models had a AAIC, < 2, we selected the model
with the fewest degrees of freedom, that is, the
most parsimonious model. We then tested for the
discriminatory power of the best model by mak-
ing predictions using the remaining 10% of the
data, and estimating the Gonen and Heller’s
Concordance Index (GHCI; Gonen and Heller
2005). The GHCI is equivalent to the area under
the receiver operating characteristic curve and, in
this application, is the probability that a ran-
domly chosen PER deployment that was preyed
upon had a higher hazard ratio than a PER that
was not preyed upon. All analyses were per-
formed in program R (v. 3.5.1; R Core Team
2018). Model selection was performed using the
dredge function from the MuMIn package (v.
1.42.1; Barton 2018) and run using the Surv and
coxme functions from the survival (v. 2.38; Ther-
neau 2015) and coxme (v. 2.2-10; Therneau 2018)
packages. GHCI was estimated using the GHCI
function from the survAUC (v. 1.0-5; Potapov
et al. 2012) package.

Based on how frequently a particular preda-
tion model appeared as the most parsimonious
model in the cross-validation exercise, an overall
top model was selected. This top model was then
run with the entirety of the dataset to obtain
parameter estimates for the ensuing analyses. We
then generated response plots for the predictor
variables included in the top model by making
hazard ratio predictions for the range of
observed values of each predictor variable, while
holding all other predictor variables at their
mean. To generate 95% confidence intervals for
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the response plots, we employed nonparametric
bootstrapping with 100 simulations and esti-
mated the 2.5% and 97.5% quantiles for every
prediction point along the response curve.

South Delta-wide extrapolation of predation risk
model

Future applications of this and similar projects
will likely be focused on extrapolating the statis-
tical relationships found here to spatial and tem-
poral scales more relevant to the management of
prey species. As such, we extrapolated our top
predation risk model to the entire South Delta,
from Mossdale to Jersey Point on the lower San
Joaquin River including all major sloughs and
waterways adjoining the lower San Joaquin River
on its river-left side. Because the statistical rela-
tionships in the predation risk model are based
off data collected in rivers and sloughs only, we
did not attempt to extrapolate predation risk to
large open bodies of water in the South Delta,
such as Franks Tract and Mildred Island.

The extrapolation was performed by first
dividing the sloughs and rivers of the South
Delta into approximately 1 km long segments
along the centerline of those waterways, result-
ing in a total of 303 1-km segments. We collected
and summarized the habitat variables that
occurred in the top predation risk model per 1-
km segment. We also selected the temporally
fluctuating variables from the top model and
simulated data values along their ranges of
observed values within our study sites. We then
used these habitat and temporal variables to pre-
dict Predation Hazard Ratios for each 1-km seg-
ment given the parameter estimates in the top
model. Finally, we also collected information on
the temporally fluctuating variables for all 1-km
segments in order to make day-step predictions
of predation risk for the spring of 2017.

For the purposes of demonstrating additional
value of the predation risk model, we can esti-
mate the overall impacts of predicted predations
risks on migrating salmonids, by considering the
cumulative effects of multiple 1-km segments
along a migration route. We attempted this exer-
cise by predicting the survival rate of a PER at
the end of a 20-min residence time in all 1-km
segments and for all day-step predictions. We
then estimated the daily product of all survival
rates for all 1-km segments (i.e., through-Delta
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survival) along the two primary migration
routes: San Joaquin River and Old River, 68 and
83 1-km segments, respectively. This geographic
area was defined as starting at Mossdale, Califor-
nia, USA, on the upstream end and ending at Jer-
sey point, California, on the downstream end
(Fig. 1). We should note that the estimated daily
cumulative survival estimates are not exactly
representative to the survival experienced by sal-
monids: Firstly, sampling occurred near sunset
and likely represents higher-than-average preda-
tion rates; secondly, salmonids attached to a PER
cannot evade predators; and thirdly, we assume
a 20-min residence time per 1-km reach, when in
reality, residence times of salmonids vary widely
and are themselves dependent on many factors,
including location within the Delta, time of day,
season, and local conditions. Nonetheless, this
analysis can effectively demonstrate the day-step
dynamics of predation risk on survival through
the outmigration season.

REsuLTS

Percent of preyed-upon PERs varied through
time and between sites, ranging from 0% to 37%
(Fig. 3, Appendix S1: Table S1). In total, we
deployed 1,670 PERs during the spring of 2017,
of which 15.7% were preyed upon. Overall, there
was an increasing trend in percent of preyed-
upon PERs as the season progressed (Fig. 3).
Weekly predation rates at the repeat sites as esti-
mated from the weekly Cox model indicated sig-
nificantly higher predation rates in weeks 5 and
6 compared to weeks 1 through 4 (p <0.01;
Fig. 3).

The environmental Cox proportional hazard
model that consistently ranked the highest,
appearing as the most parsimonious model in 82
of the 100 10-fold cross-validation simulations,
included temperature, bottom roughness, mean
predator distance, and time to sunset (Table 1).
The mean GHCI for this top model was 0.75, sug-
gesting that for 75% of randomly chosen pairs of
PER deployments, the model would have cor-
rectly predicted the higher risk PER deployment.
These four variables also appear in all other
models (with the exception of 1 cross-validation
simulation with a best model that did not include
mean predator distance). In addition to the four
variables that were included in the top model,
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Fig. 3. Percent of preyed-upon PERs through time
during the 2017 field season. Black hollow points
depict sites visited only once, and colored hollow
points depict repeat sites (site 1 in red, site 25 in blue,
and site 28 in green). Solid black points depict percent
of preyed-upon PERs as predicted by the weekly pre-
dation Cox model using data from repeat sites only
(with 95% confidence intervals). Vertical gray lines
depict the delineation between sampling weeks.

the next most frequently occurring covariate (ap-
pearing in 14% of models) was distance-to-near-
est SAV. Finally, distance to shore also appeared
in 9% of models. Temperature and bottom
roughness had a positive relationship with rela-
tive predation risk, while mean predator distance
had a negative relationship with relative preda-
tion risk. For the models including distance-to-
nearest SAV, the parameter coefficient was nega-
tive, but due to being inverse distance weighted,
this indicated that predation risk was lowest in
close proximity to SAV. For the few models
including distance to shore, that coefficient was
negative, indicating a higher relative predation
risk when closer to shore.

Using the top model with the full dataset, pre-
dicted cumulative PER survival proportion
through time decreased to approximately 0.85
(or 0.15 PER mortality) over the span of 5000 sec-
onds (83.3 min). The parameter coefficients for
temperature, mean predator distance, and bot-
tom roughness were 0.72, —0.35, and 0.30,
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respectively, and their hazard ratios (exponenti-
ated coefficients) were 2.05 (1.61-2.60, 95% C.L.),
0.70 (0.56-0.88), and 1.35 (1.01-1.80), respec-
tively. The hazard ratio is interpreted as the fac-
tor increase in predation risk based on a one
standard deviation increase in the factor; for
example, for temperature, 1 standard deviation
increase leads to a doubling in predation risk.
Due to the spline, time to sunset had several coef-
ficients, making it difficult to interpret; nonethe-
less, it was a strong predictor of predation risk.
Both time to sunset and water temperature had
an approximate threefold increase in predation
risk at its maximum compared to mean condi-
tions (Fig. 4).

South Delta-wide extrapolation of predation risk
model

We then predicted predation hazard ratio esti-
mates throughout the South Delta at a 1-km reso-
lution for the spring of 2017 using the top model.
For this, covariates in the top model needed to be
estimated for the entire South Delta. For mean
predator distance, we used predator densities as
predicted by the most parsimonious predator
density model (Loomis 2019) as a proxy. This sub-
model included sinuosity, bottom roughness, and
number of SAV patches as predictor variables.
Additional information on how predator densi-
ties were predicted and utilized in the extrapola-
tion exercise can be found in Appendix S2.

Because temperature was the only temporally
varying environmental covariate in the top pre-
dation risk model, we first predicted what the
predation hazard ratio would be throughout the
South Delta given different fixed temperature
scenarios. We ran a scenario at the minimum,
mean, and maximum temperatures recorded
(13°, 16°, and 19°C) in the lower San Joaquin dur-
ing the project. The per 1-km predation hazard
ratios estimated for the 13°C scenario were
almost all below 1, indicating lower predation
risk throughout almost the entire South Delta,
relative to mean conditions experienced during
spring of 2017 (Fig. 5). The predation hazard
ratios for the 16°C scenario ranged from 0.5 to
42 (with one outlier at 22.0), indicating an
increase or decrease predation risk depending on
the site. The predation hazard ratios for the 19°C
scenario ranged from 1.7 to 14.8 (with one outlier
at 77.2), indicating increased predation risk over
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Table 1. Top predation risk models from 10-fold cross-validation model selection exercise.

Mean Distance to SAV Time  Percentage of
predator ~ Bottom  Distance (inverse distance Flow to simulations as  Mean
distance  roughness toshore Temperature weighted) velocity Turbidity sunset top model GHCI
—0.36 0.30 0.71 . + 82 0.75
—-0.35 0.29 . 0.68 —-0.22 + 7 0.76
—0.34 0.26 —0.31 0.73 —0.30 + 6 0.75
—0.33 0.29 —-0.23 0.73 .. + 2 0.75
—0.47 0.26 0.73 0.26 o + 1 0.77
—0.26 0.25 e 0.71 . 0.21 + 1 0.76

0.33 —-0.28 0.71 —-0.35 + 1 0.75

Notes: Each row represents one unique model, and the rows are sorted by how frequently they are the top model from the
100 simulations (decreasing order). The eight left columns depict the mean standardized parameter coefficients (i.e., logged
hazard ratios) for the covariates that appear in at least one of the top models. Row cells with ellipses signify that the model did
not include that variable. Factors that did not appear in any top models were not included in the table. Due to the spline func-
tion applied to the time-to-sunset covariate, that covariate had multiple parameter coefficients; we only present here if the

covariate was included in each model with a +.

mean conditions throughout the South Delta,
with a 77-fold increase in one site (Head of Old
River, HOR).

In order to estimate predation risk for the
entire 303 1-km segments of the South Delta at a
day time-step for the spring of 2017, water tem-
perature was estimated at this same resolution
(Appendix S2). The resulting predation risk
extrapolations indicated that there were impor-
tant regional differences in predation risk within
the daily time-step results across the South Delta.
Although the overall highest risk site was in the
southern (upstream) part of the Delta (at Head of
Old River site) in the relatively warmer late
spring of 2017, the more northern (downstream)
sites of the South Delta tended to have higher
water temperatures and therefore higher preda-
tion during this period (Fig. 6).

Despite the additional 15 km along the Old
River route, the predicted daily through-Delta
survival along the two routes was almost identi-
cal from late March to early May (Fig. 7). During
the month of May, survival in the San Joaquin
route improved relative to the Old River route,
likely due to the increased water temperatures in
the Old River during this period, although both
routes have drastically lower survival than the
early spring. If HOR survival is removed from
the San Joaquin route, survival is higher through-
out the season, but marginally so during May
due to the near-zero survival. To contextualize
the real-world ramifications of these predictions,
we estimated weekly juvenile Chinook salmon
catch per unit effort during our study period
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from a near-daily Kodiak trawl operated at the
upstream end of the South Delta (Mossdale, Cali-
fornia, USA) by the U.S. Fish and Wildlife Ser-
vice and the California Department of Fish and
Wildlife  (https://www.fws.gov/lodi/juvenile_f
ish_monitoring_program/jfmp_index.htm). This
effort indicated that the large majority of juvenile
Chinook salmon entered the South Delta during
the period of lowest predicted survival (Fig. 7).

DiscussioN

We developed a spatially explicit statistical
model of predation risk for outmigrating juvenile
salmonids for the southern portion of the Sacra-
mento-San Joaquin Delta. In the spring of 2017,
predation risk for salmonids and other similar
prey species in the South Delta were strongly
influenced by water temperature, time of day,
predator density, and bottom roughness. The
direction and form of all discovered relationships
between these variables and predation risk are
congruent with our a priori expectations. We
used the model to generate out-of-sample predic-
tions based exclusively on environmental condi-
tions, which allowed us to identify several
locations that are predicted to have consistently
high predation risk throughout the season (i.e.,
predation hot spots). This included the Head of
Old River, which has been identified by previous
telemetry studies as an area of abnormally high
predation rates (Vogel 2010, CDWR 2015). We
also identified a strong seasonal trend in pre-
dicted migration success through the South
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positive numbers increasing from zero.

Delta, and found strong evidence that the major-
ity of Chinook salmon migrants in the South
Delta in the spring of 2017 likely experienced rel-
atively high predation risk. The elucidation of
these important spatial and temporal trends in
predation risk is critical to resource managers
tasked with restoring these imperiled popula-
tions, and clearly demonstrates the value of the
landscape-level approach to understanding
predator—prey dynamics.

Temperature is well recognized as a potential
driver of predation risk, likely by impacting
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bioenergetic demands of exothermic predators
(Rice et al. 1983, Hartman and Brandt 1995).
Temperature can also influence predator behav-
ior and distribution in response to their thermal
preferences (Diaz et al. 2007, Callihan et al. 2014).
The upper limit of temperatures measured dur-
ing sampling in the spring of 2017 (20°C) is
approximately the lower end of the thermal pref-
erence of striped bass (Coutant 1986), which is
the primary salmonid predator in the South
Delta (Michel et al. 2018). It is possible that the
highly migratory striped bass were not found in
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Fig. 5. Violin plots, with boxplots imbedded within,
of predicted predation hazard ratios (log-scale) per 1-
km site (303 in total) per temperature scenario (13°,
16°, and 19°C). Dashed horizontal black line depicts a
predation hazard ratio of 1, that is, unchanged preda-
tion hazard ratio over mean conditions. Bold horizon-
tal lines within boxplot boxes represent median
values; lower and upper horizontal lines of the box
represent 25th and 75th percentile values; upper and
lower vertical lines beyond the boxes represent the
75th and 25th percentiles £ 1.5 times the interquartile
range (distance from 25th to 75th percentile); values
beyond these are considered outliers and are repre-
sented with solid points.

large numbers in sampling sites with water tem-
peratures below this threshold.

Our study also found a strong influence of
habitat features on predation risk, which man-
agers may be able to manipulate through restora-
tion actions. There was a positive relationship
between bottom roughness and predation risk.
This was likely mediated through the complex
habitat that heterogeneous landscapes create,
which likely increases predator densities (as
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corroborated by the fact that bottom roughness
was also a factor in the predator density sub-
model) and predator ambush habitat. Distance to
shore also had moderate support despite not
appearing in the top model, with higher preda-
tion risk in the nearshore area: This could also be
driven by the abundant predators commonly
found in the shallow-water, SAV-abundant near-
shore area.

Furthermore, our study also found a strong
influence of predator densities on predation risk,
indicating that predation risk is not solely medi-
ated through habitat and environmental condi-
tions. This suggests that if habitats could be
modified to support smaller populations of
predators, this would also impart survival bene-
fits to imperiled prey populations. At the 1-km
scale, the number of patches of an invasive SAV
was one of the covariates that had the largest
influence on predator density and could also be
manipulated by managers (Appendix S2; Loomis
2019). This corroborates previous studies that
have found significant relationships between
SAV and both predators and predation risk in the
Delta (Ferrari et al. 2014, Conrad et al. 2016).
Loomis (2019) suggested that rather than
attempting to modify the entire South Delta, one
option would be to modify a consistent migra-
tion route (e.g., the mainstem San Joaquin River)
to provide a corridor that had reduced predation
risk for emigrating juvenile salmonids.

The top model correctly predicted a known
predation hot spot in the South Delta at the Head
of Old River. Other predation hot spots are
known to exist throughout the Delta, and their
impacts on population-level survival of salmo-
nids (and other imperiled native species) are
unknown. What is clear from this analysis is that
predation risk during certain periods of their out-
migration season can be sufficiently high
throughout the South Delta that attempting to
mitigate discrete hot spots may ultimately lead
to negligible impacts on population-level sur-
vival. This is corroborated by a study that was
unable to detect an increase in survival or a
decrease in predation following an effort to
remove predators from the Head of Old River
site (Michel et al. 2020).

Some limitations of this study warrant discus-
sion. Firstly, tethered prey cannot avoid preda-
tors and may behave differently than free-
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swimming prey, and therefore, it is likely they
are subject to higher-than-normal predation
rates. Hence, these estimates, while useful in a
relative sense, are only correlated with true pre-
dation intensity and not an exact measure of it.
Similarly, when considering the relationships
between environmental covariates and predation
risk presented here, consider they are being
mediated through the metabolic demands and
behaviors of the predators only. This is only half
of the equation: We did not investigate how envi-
ronmental covariates may have also influenced
juvenile salmonid distribution, health, and over-
all vulnerability to predation during our study.
These prey-side responses are known to also be
important determinants of predation risk (Mar-
ine and Cech 2004, Miller et al. 2014, Lehman
et al. 2017). Future efforts should attempt to pair
with studies to discern salmonid distribution
and condition on a landscape scale. Secondly,
predation risk estimates as measured by PERs
are not representative of the entire cross section
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of a waterway because they only sample the
upper 1.5 m of the water column and do not
effectively sample the extreme margins of the
waterway channel. Nonetheless, actively migrat-
ing Chinook salmon are known to occupy the
center channel of rivers (Sandstrom et al. 2013),
and are largely found in the upper water column
(Smith 1974).

The predation relationships from our study
may only be representative of conditions during
exceptionally wet years (as seen in 2017), and cer-
tain environmental covariates did not vary across
their typical range as seen in more typical hydro-
logic years, and may have otherwise been an
important predictor of predation risk. The water
conditions may have also affected predator dis-
tributions: Anecdotal information from fishing
guides suggested that striped bass densities in
the Delta were low during the spring 2017, and
that striped bass were drawn into the major river
systems, upstream of the Delta, in larger num-
bers than usual due to the large river flows.
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Fig. 7. Daily predicted through-Delta survival (given daily local conditions) along either the Old River migra-
tion route (green), the San Joaquin River migration route (red), or the San Joaquin River route without the HOR

site (blue). Associated barplot represents weekly catch per unit effort of Chinook salmon from a near-daily

Kodiak trawl survey on the San Joaquin River at the upstream entrance to the South Delta, starting the first week

of April (Mossdale, California, USA).

Thus, one of the major predator species may
have been lower in density than usual during
this study. Taken together, such evidence implies
that any extrapolation from the relationships
described here should be done with caution
unless the goal is to predict predation risk in
extremely wet years.

Our study provides a repeatable methodology
for quantitatively exploring the role of environ-
mental conditions on predation dynamics in
many different habitat types and water years. We
set our spatial extent to the South Delta, but
future work could easily extend such work to the
entire Delta or beyond. Similarly, a follow-up
study spanning several years of various water
conditions would likely improve our models and
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increase their applicability. This methodology
can also be employed in other freshwater, estuar-
ine, or marine systems where information on
landscape-scale predation is critically lacking.
The management of water and ecological
resources in the Delta is a contentious issue,
involving multiple resource agencies, stakehold-
ers, and academic institutions. Increasingly, man-
agement actions are being thoroughly evaluated
before implementation using physical and eco-
logical models. Many of these models, particu-
larly those concerning the impacts of water and
habitat management on imperiled native fish
populations, attempt to incorporate the role of
fluctuating environmental and habitat variables
on the susceptibility of these populations to
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predation. However, the mechanisms and relation-
ships needed to make these evaluations are largely
unknown, and are currently being informed by
data from few, small-scale case studies. Our study
is a first step in providing these models with preda-
tion data on the landscape scale, further improving
their ability to predict the ecological ramifications of
significant management decisions. The spatially
and temporally explicit predation risk predictions
generated by this model should also be incorpo-
rated into Chinook salmon survival models used by
the many acoustic tagging studies conducted in the
Delta (Perry et al. 2010, Buchanan et al. 2013, Michel
et al. 2015). This will allow managers to tease apart
what proportion of juvenile Chinook salmon mor-
tality may be directly attributable to predation, a
statistic that as of now is largely unknown.

Besides providing other physical and ecologi-
cal models information they need on predation
risk, this study has already yielded potentially
powerful guidance to resource managers in the
Delta. Firstly, our study provides strong evidence
that managers could substantially increase the
survival of juvenile salmonids in the South Delta
if they were able to decrease water temperatures
during the outmigration window. Secondly, we
objectively identified predation hot spots where
habitat characteristics are predicted to be particu-
larly hostile to prey survival and therefore assist
managers in prioritizing where habitat restora-
tion may be most warranted. Finally, we devel-
oped a through-Delta survival metric that could
be used by managers to promote migration of
wild fish, as well as release hatchery fish, at times
when though-Delta survival is forecasted to be
high. A poignant example of this can also be seen
in the spring of 2017, when the vast majority of
outmigrating Chinook salmon entered the Delta
during a period of relatively high predation risk
(Fig. 7). A large proportion of these fish were
hatchery-origin and could have avoided these
conditions had they been released mere weeks
earlier.

This issue of predation in the Delta resides at
the intersection of industrial-scale resource man-
agement and extraction, a severely degraded
estuary, ESA-listed native fish populations, non-
native fish predators, and the needs of over 27
million Californians and 3 million acres of farm-
land. In the Sacramento-San Joaquin Delta, pre-
dation by non-native fish species on native
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imperiled fish populations is a major manage-
ment concern. The Delta provides water for a
large portion of the agricultural and municipal
needs of the state of California, but water diver-
sions are often blamed for the poor state of native
fish populations. At the same time, and likely
exacerbated by these water diversions, non-na-
tive fish predator populations have recently
increased leading to the further decline in native
fishes. This has made recovery of these native
fish populations, and therefore mitigation of pre-
dation risk, a legal and moral prerequisite for
future water extractions. Although there is now a
rush to manage the Delta to mitigate predation
risk, the available information has only been col-
lected at limited spatial and temporal scales. Our
study is one of the first to provide managers with
the information and tools to bridge this gap.
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